DIANIONS OF β -HYDROXY SULFONES: NEW AND GENERAL APPROACH TO SELECTIVE SYNTHESIS OF 2 (5 μ)-FURANONES

Kazuhiko TANAKA,* Kazuhiko OOTAKE, Keisuke IMAI, Nobuo TANAKA, and Aritsune KAJI

Department of Chemistry, Faculty of Science, Kyoto University, Sakyo, Kyoto 606

[†]Faculty of Textile Science, Kyoto Institute of Technology, Sakyo, Kyoto 606

Dianions derived from ß-hydroxy sulfones are highly reactive toward a variety of electrophiles including alkyl halides, carbonyl compounds, and sodium iodoacetate. A convenient synthetic method for 4-alkyl- and 5-alkyl-2(5H)-furanones has been developed by using these dianions. A new synthetic approach to trans-3,4-bis(3-hydroxybenzyl)dihydro-2(3H)-furanone, the first lignan found in humans, via a facile reduction of 2(5H)-furanone with Mg-methanol is also decribed.

Furanones and their dihydro derivatives are frequently found in natural products such as lignans, $^{1)}$ Mokupalide $^{2)}$ isolated from a marine sponge, and sex pheromones $^{3)}$ from the black-tailed deer, the Japanese beetle, or the rove beetle, and also are useful intermediates for the synthesis of cerulenin, $^{4)}$ perillene, and dendrolasin. $^{5)}$ For this reason, considerable effort has been devoted toward the discovery of useful synthetic methods for the construction of such a framework. $^{6)}$ In this communication, we describe a general methodology for the preparation of 2(5H)-furanones and its application to the efficient synthesis of trans-3,4-bis(3-hydroxybenzyl)dihydro-2(3H)-furanone.

Our concern in this field lay in the development of the structural equivalents of β -anion (1) and γ -anion (2) of 2(5 μ)-furanone. Toward this end, we investigated the reactivity of functionalized sulfones because of the

readily availability as the starting materials. Addition of 2.2 equiv. of butyllithium to a solution of 8-phenylsulfonyl-1-octanol in THF containing 2.2

equiv. of TMEDA at 0° C produced an orange suspension, which was treated with excess CH₃OD after 4 h. 1 H-NMR analysis of the product (98% yield) isolated after aqueous workup showed quantitative deuterium incorporation at the 8-position indicating the exclusive formation of the diamion (3). However,

attempts to introduce a carboxymethyl group at this position by the reaction of 3 with sodium iodoacetate even in the presence of 3.4 equiv. of HMPA were unsuccessful. In contrast, the dianion (4) of 2-phenylsulfonyl-1-octanol generated on treatment with 2.2 equiv. of butyllithium in THF-TMEDA at 0°C is a homogeneous, stable solution, and highly reactive toward sodium iodoacetate, in spite of tendency of β -substituted organometallic derivatives to decompose into olefins by β -elimination. 8)

The enhanced reactivity of the dianion (4) may be caused by the proximity of two anionic parts due to the intramolecular complexation. 9)
Thus, treatment of 4 with sodium iodoacetate gave the corresponding hydroxy acid, which was directly transformed into 4-hexyl-4-(phenylsulfonyl)dihydro-2(3H)-furanone by refluxing in benzene for 3 h in the presence of a catalytic amount of p-TsOH.

Table 1. Preparation of 4-alkyl-2(5H)-furanones and 5-alkyl-2(5H)-furanones.

Sulfone	Electrophile $(R_2^X \text{ or } R_3^CHO)$	Adduct 7,8 or 15		Fur	Furanone 9 or 16	
5	1-Iodohexane	7a	(96%)	9a	(67%)	
5	1-Iododecane	7b	(73%)	9b	(61%)	
5	1-Iodododecane	7c	(88%)	9c	(64%)	
5	Geranyl bromide	7d	(73%)	9d	(46%)	
6	1-Bromooctane	8e	(81%)	9e	(53%)	
6	1-Iododecane	8f	(92%)	9b	(57%)	
14	Cyclohexanecarbaldehyde	15g	(100%)	16g	(50%)	
14	Valeraldehyde	15h	(100%)	16h	(52%)	
14	Isobutyraldehyde	15i	(99%)	16i	(52%)	
14	Isovaleraldehyde	15j	(99%)	16j	(60%)	
14	Heptanal	15k	(98%)	16k	(51%)	
14	Nonanal	151	(99%)	161	(55%)	

The desired 4-alkyl-2(5H)-furanone (9) was readily obtained upon treatment of 4-alkyl-4-(phenylsulfonyl)dihydro-2(3H)-furanone with excess triethylamine in

benzene at room temperature for 17 h (Table 1).

The versatility of this methodology is apparent from the following convenient one-pot synthesis of trans-3,4-bis(3-hydroxybenzyl)dihydro-2(3 $_H$)-furanone (13), isolated from female urine as a non-steroidal constituent. ¹⁰⁾ Thus, 4-(3-methoxybenzyl)-2(5 $_H$)-furanone (10) was prepared in 51% by sequential treatments (a, b, c, and d), starting with 2-(phenylsulfonyl)ethanol (5).

The most crucial step in this synthesis involves reduction of the carbon-carbon double bond in furanone unit of 10. The ordinary reduction procedures using 5% or 10% palladium on carbon were found to be fruitless, however the facile conversion of 10 into 11 could be achieved on treatment with Mg in methanol at room temperature for 3 h. 11) Treatment of 11 with LDA in THF containing a small amount of HMPA followed by the addition of 3-methoxybenzyl bromide produced 12 in 72%. 10c)

The synthesis of 5-alkyl-2(5#)-furanone (16) utilizes the #-hydroxy sulfones derived from lithiomethyl phenyl sulfone and aldehydes. The diamion of 15 was also found to be reactive toward sodium iodoacetate. The conversion into 16 was carried out by a similar procedure for the 4-alkyl-2(5#)-furanone synthsis. The results are summarized in Table 1.

This work was supported by Grant-in-Aid for Science Research from the Ministry of Education (No. 57118004), and a grant from Zen-Noh Agricultural Technical Center.

References

- 1) For a recent review, see: R. S. Ward, Chem. Soc. Rev., 11, 75 (1982).
- a) M. B. Yunker and P. J. Scheuer, J. Am. Chem. Soc., <u>100</u>, 307 (1978);
 b) F. W. Sum and L. Weiler, ibid., <u>101</u>, 4401 (1979);
 c) M. Kobayashi and E. Negishi, J. Org. Chem., <u>45</u>, 5223 (1980).
- 3) a) J. H. Tumlinson, M. G. Klein, R. E. Doolittle, T. L. Ladd, and A. T. Proveaux, Science, 197, 789 (1977); b) W. H. Pirkle and P. E. Adams, J. Org. Chem., 44, 2169 (1979); c) M. Nishizawa, M. Yamada, and R. Noyori, Tetrahedron Lett., 22, 247 (1981); d) M. M. Midland and A. Tramontano,

- ibid., 21, 3549 (1980); e) K. Mori and H. Akao, ibid., 1978, 4127.
- 4) a) A. A. Jakubowski, F. S. Guziec, Jr., M. Sugiura, C. C. Tam, M. Tishler, and S. Omura, J. Org. Chem., 47, 1221 (1982).
- 5) a) S. Takahashi, Synth. Commun., 6, 331 (1976); b) J. E. McMurry and S. F. Donovan, Tetrahedron Lett., 1977, 2869; c) K. Kondo and M. Matsumoto, ibid., 1976, 391; d) M. E. Grast and T. A. Spencer, J. Am. Chem. Soc., 95, 250 (1973).
- 6) a) Y. S. Rao, Chem. Rev., 76, 625 (1976); b) D. Caine and A. S. Frobese, Tetrahedron Lett., 1978, 5167; c) J. P. Vigneron and J. M. Blanchard, ibid, 21, 1739 (1980); d) E. J. Corey and G. Schmidt, ibid., 21, 731 (1980); e) T. Shono, Y. Matsumura, and S. Yamane, ibid., 22, 3269 (1981); f) P. Brownbridge and T.-H. Chan, ibid., 21, 3431 (1980); g) U. Ravid and R. M. Silverstein, ibid., 1977, 423; h) M. Larcheveque, C. Legueut, A. Debal, and J. Y. Lallemand, ibid., 22, 1595 (1981); i) J. P. Vigneron and V. Bloy, ibid., 21, 1735 (1980); j) T. Mukaiyama, K. Fujimoto, T. Hirose, and T. Takeda, Chem. Lett., 1980, 635; k) T. Mukaiyama and K. Suzuki, ibid., 1979, 255; 1) T. Mukaiyama, K. Fujimoto, and T. Takeda, ibid., 1979, 1207; m) K. Mikami, N. Kishi, and T. Nakai, ibid., 1981, 1721; n) K. Kondo and F. Mori, ibid., 1974, 741; o) P. A. Bartlett, J. Am. Chem. Soc., 98, 3305 (1976); p) A. Cowell and J. K. Stille, ibid., 100, 4193 (1980); q) G. Solladie and F. Matloubi-Maghadam, J. Org. Chem., 47, 91 (1982); r) K. Iwai, H. Kosugi, H. Uda, and M. Kawai, Bull. Chem. Soc. Jpn., 50, 242 (1977); s) H. H. Inhoffen, W. Kreiser, and M. Nazir, Justus Liebigs Ann. Chem., 755, 1 (1972); t) M. K. Wit, D. J. Frost, and J. P. Ward, Recl. Trav. Chim. Pays-Bas, 90, 1207 (1971); u) J.-C. Gandquillot and F. Rouessac, Bull. Soc. Chim. Fr., 1979, II-325; v) P. Brownbridge, E. Egert, P. G. Hunt, O. Kennard, and S. Warren, J. Chem. Soc., Perkin Trans. 1, 1981, 2751.
- 7) a) M. Julia, D. Uguen and A. Callipolitis, Bull. Soc. Chim. Fr., 1976, 519; b) M. Julia, and J.-M. Paris, Tetrahedron Lett., 1973, 4833; c) P. J. Kocienski, B. Lythgoe, and S. Ruston, J. Chem. Soc., Perkin Trans. 1, 1978, 829.
- 8) a) J. J. Eisch and J. E. Galle, J. Am. Chem. Soc., <u>98</u>, 4646 (1976); b) J. Barluenga, F. J. Fananas, J. Villamana, and M. Yus, J. Org. Chem., <u>47</u>, 1560 (1982), and references cited therein.
- 9) G. W. Klumpp, M. Kool, M. Schakel, R. F. Schmitz, and C. Boutkan, J. Am. Chem. Soc., 101, 7065 (1979).
- 11) J. A. Profitt, D. S. Watt, and E. J. Corey, J. Org. Chem., <u>40</u>, 127 (1975). (Received February 3, 1983)